A Partially Ordered Structure and a Generalization of the Canonical Partition for General Graphs with Perfect Matchings

نویسنده

  • Nanao Kita
چکیده

This paper is concerned with structures of general graphs with perfect matchings. We first reveal a partially ordered structure among factor-components of general graphs with perfect matchings. Our second result is a generalization of Kotzig’s canonical partition to a decomposition of general graphs with perfect matchings. It contains a short proof for the theorem of the canonical partition. These results give decompositions which are canonical, that is, unique to given graphs. We also show that there are correlations between these two and that these can be computed in polynomial time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Altan derivatives of a graph

Altan derivatives of polycyclic conjugated hydrocarbons were recently introduced and studied in theoretical organic chemistry. We now provide a generalization of the altan concept, applicable to any graph. Several earlier noticed topological properties of altan derivatives of polycyclic conjugated hydrocarbons are shown to be the properties of all altan derivatives of all graphs. Among these ar...

متن کامل

Global Forcing Number for Maximal Matchings under Graph Operations

Let $S= \{e_1,\,e_2‎, ‎\ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$‎, ‎where $d_i=1$ if $e_i\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\in\{1,\ldots‎ , ‎k\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $...

متن کامل

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

An Alternative Proof of Lovász’s Cathedral Theorem

A graph G with a perfect matching is called saturated if G + e has more perfect matchings than G for any edge e that is not in G. Lovász gave a characterization of the saturated graphs called the cathedral theorem, with some applications to the enumeration problem of perfect matchings, and later Szigeti gave another proof. In this paper, we give a new proof with our preceding works which reveal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012